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Quantum Motion on 2D Surface
of Nonspherical Topology
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An excess term exists when using hermitian form of Cartesian momentum pi (i = 1, 2, 3)
in usual kinetic energy 1/(2µ)

∑
p2

i for a particle moving on the 2D surface, and the
correct kinetic energy turns to be 1/(2µ)

∑
1/ fi pi fi pi where the fi are dummy factors

in classical mechanics and nontrivial in quantum mechanics. In this paper, the explicit
form of the dummy functions fi is given for some surfaces of nonspherical topology,
such as toroidal surface, paraboloid of revolution, the hyperboloid of revolution of two
sheets, and the hyperboloid of revolution of one sheets.
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1. INTRODUCTION

Recently, we have noted that for a free particle moving on the surface of a
sphere, or a rigid rotator, there is a new type of ordering problem with correct use
of Cartesian momentum (Lia, 2003). In this paper, we will demonstrate that this
problem presents in all constrained nonrelativistic quantum systems.

First, let us give a brief review of the ordering problem newly found in the
rigid rotator. The quantum Hamiltonian for the rigid rotator is, (Cohen-Tannoudji,
Diu, and Laloë, 1977),

T ≡ − h2

2µ
∇2 = − h2

2µr2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
(1)

This Hamiltonian can be obtained by canonical quantizations of classical Hamil-
tonian in either Cartesian-coordinate-dependent form Tcc

Tcc = 1

2µ

(
p2

x + p2
y + p2

z

)
(2)
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whereµ is the reduced mass of the molecular system, or the generalized-coordinate-
dependent form Tgc (Podolsky, 1928; Kleinert, 1990)

Tgc = 1

2µ

∑
i j

1

g1/4
pi g

1/4gi j g1/4 p j
1

g1/4
(3)

where gi j are the metric coefficients, g is the determinant of the gi j matrix, and
gi j are the elements of inverse matrix of gi j . To note that there is a dummy fac-
tor involving g in Tgc, and these factors do not make sense unless in quantum
mechanics (Podolsky, 1928; Kleinert, 1990) . However, different from the gener-
alized momenta pi used in Tgc (3) which are hermitian, the Cartesian momentum
pi (i = 1, 2, 3) in Tcc (2) take the following non-Hermitian form

px = −i h
∂

∂x
= − i h

r

(
cos θ cos ϕ

∂

∂θ
− sin ϕ

sin θ

∂

∂ϕ

)
(4)

py = −i h
∂

∂y
= − i h

r

(
cos θ sin ϕ

∂

∂θ
+ cos ϕ

sin θ

∂

∂ϕ

)
(5)

pz = −i h
∂

∂z
= − i h

r
sin θ

∂

∂θ
(6)

where the relations between Cartesian and spherical surface coordinates (x , y, z)
and (θ , ϕ) are

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (7)

should take the following form

T =
∑

i

1

fi (x , y, z)
pih fi (x , y, z)pih (15)

where fi (x , y, z) are dummy factors in classical mechanics, and whose existence
can be easily demonstrated. The calculation of yielding an explicit form of function
fi (x , y, z) in quantum mechanics is straightforward. In rest of this paper, we will
list the results for some surfaces of nonspherical topology.

2. THE CORRECT USE OF HERMITIAN FORM OF CARTESIAN
MOMENTUM IN QUANTUM MOTION CONSTRAINED
ON 2D SURFACE OF NONSPHERICAL TOPOLOGY

2.1. The Quantum Motion on the Toroidal Surface

The toroidal surface is with two positive parameters (a, b) (a � b),

Y = ((a + b sin θ ) cos ϕ, (a + b sin θ ) sin ϕ, b cos θ )

where θ ∈ [0, 2π ), ϕ ∈ [0, 2π ).
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The kinetic energy operator reads [4],

T = − h2

2m
	 = − h2

2m

(
1

b2

∂2

∂θ2
+ 1

b2

∂ ln g

∂θ

∂

∂θ
+ 1

(a + b sin θ )2

∂2

∂ϕ2

)
(16)

where g = b(a + b sin θ ).
The Hermitian operators pi (i = 1, 2, 3) are,

px = −i h
1√
g

(
∂

∂θ

√
g

cos θ cos ϕ

b
+ ∂

∂ϕ

√
g

sin ϕ

a + b sin θ

)
(17)

px = −i h
1√
g

(
∂

∂θ

√
g

cos θ sin ϕ

b
+ ∂

∂ϕ

√
g

cos ϕ

a + b sin θ

)
(18)

px = −i h
1√
g

∂

∂θ

√
g

sin θ

b
(19)

Then Eq. (15) holds true with fi (x , y, z) (i = 1, 2, 3) being, respectively,

f1(x , y, z) = √
yz, f2(x , y, z) = √

xz,

f3(x , y, z) = 4
√

(x2 + y2)(b2 − z2) (20)

This result reduces to that for the rigid rotator with a = 0, b = r .

2.2. The Quantum Motion on the Paraboloid of Revolution

The equation for the paraboloid of revolution is with a parameter η that can
be conveniently chosen to be positive,

z = x2 + y2

2η
− η

2
(21)

which can be rewritten in terms of parametric form,

x =
√

ζη cos ϕ, y =
√

ζη sin ϕ, z = 1

2
(ζ − η) (22)

where ζ ∈ (0, ∞) and ϕ ∈ [0, 2π ). The figure is shown in Fig. 1. The kinetic energy
operator reads,

T = − h2

2m
	 = − h2

2m

(
4

g

∂

∂ζ

gζ

(ζ + η)

∂

∂ζ
+ 1

ζη

∂2

∂ϕ2

)
(23)

where g = √
η(ζ + η)/2. The hermitian operators pi (i = 1, 2, 3) are,

px = −i h
1√
g

(
∂

∂ζ

√
g

2 sin ϕ
√

ζη

ζ + η
− ∂

∂ϕ

√
g

cos ϕ√
ζη

)
(24)
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Fig. 1. The surface of paraboloid of revolution with parameter η = 1.

px = −i h
1√
g

(
∂

∂ζ

√
g

2 sin ϕ
√

ζη

ζ + η
+ ∂

∂ϕ

√
g

cos ϕ√
ζη

)
(25)

px = −i h
2√
g

∂

∂ζ

√
g

ζ

ζ + η
(26)

Then Eq. (15) holds true with fi (x , y, z) (i = 1, 2, 3) being, respectively,

f1(x , y, z) =
(

ζ sin2 ϕ

ζ + η

)1/4

, f2(x , y, z) =
(

ζ cos2 ϕ

ζ + η

)1/4

,

f3(x , y, z) =
(

ζ 2

ζ + η

)1/4

(27)

2.3. The Quantum Motion on the Hyperboloid of Revolution of Two Sheets

The equation for the hyperboloid of revolution of two sheets is with parameter
η ∈ (−1, 1),

x2 + y2

η2
− z2

1 − η2
= a2 (28)

which can also be rewritten in terms of parametric form,

x = aζη cos ϕ, y = aζη sin ϕ, z = a
√

(ζ 2 − 1)(1 − η2) (29)

where ζ ∈ (1, ∞) and ϕ ∈ [0, 2π ) (see Fig. 2).
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Fig. 2. The surface of hyperboloid of two sheets of revolution with parameters a = 1, η = 0.7.

The kinetic energy operator reads

T = − h2

2m
	 = − h2

2m

(
1

g

∂

∂ζa2

g(ζ 2 − 1)

(ζ 2 − η2)

∂

∂ζ
+ 1

a2ζ 2η2

∂2

∂ϕ2

)
(30)

where g = a2ζη
√

(ζ 2 − η2)/(ζ 2 − 1). The Hermitian operators pi (i = 1, 2, 3) are

px = −i h
1√
g

(
∂

∂ζ

√
g

cos ϕ(ζ 2 − 1)η

a(ζ 2 − η2)
+ ∂

∂ϕ

√
g

sin ϕ

aζη

)
(31)

px = −i h
1√
g

(
∂

∂ζ

√
g

sin ϕ(ζ 2 − 1)η

a(ζ 2 − η2)
+ ∂

∂ϕ

√
g

cos ϕ

aζη

)
(32)

px = −i h
1√
g

∂

∂ζ

√
g
ζ
√

(ζ 2 − 1)(1 − η2)

ζ 2 − η2
(33)

Then Eq. (15) holds true with fi (x , y, z) (i = 1, 2, 3) being, respectively

f1(x , y, z) =
(

ζ 2 sin2 ϕ

ζ 2 − η2

)1/4

, f2(x , y, z) =
(

ζ 2 cos2 ϕ

ζ 2 − η2

)1/4

,

f3(x , y, z) =
(

ζ 4

ζ + η

)1/4

(34)
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Fig. 3. The surface of hyperboloid of two sheets of revolution with parameters a = 1, η = 0.7.

2.4. The Quantum Motion on the Hyperboloid of Revolution of One Sheet

The equation for the hyperboloid of revolution of two sheets is with parameter
ηε(−1, 1)

− x2 + y2

1 − η2
+ z2

η2
= a2 (35)

which can also be rewritten in term of parametric form

x = a
√

(ζ 2 − 1)(1 − η2) cos ϕ, y = a
√

(ζ 2 − 1)(1 − η2) sin ϕ, z = aζη

(36)

where parameter ζ ∈ (1, ∞), ϕ ∈ [0, 2π ) (see Fig. 3).
The kinetic energy operator reads

T = − h2

2m
	 = − h2

2m

(
1

g

∂

∂ζ

g(ζ 2 − 1)

a2(ζ 2 − η2)

∂

∂ζ
+ 1

a2(ζ 2 − 1)(1 − η2)

∂2

∂ϕ2

)
(37)

where g = a2
√

(ζ 2 − η2)(ζ 2 − 1). The Hermitian operators pi (i = 1, 2, 3) are,
respectively

px = −i h
1√
g

(
∂

∂ζ

√
g

sin ϕζ
√

(ζ 2 − η2)(ζ 2 − 1)

a(ζ 2 − η2)

− ∂

∂ϕ

√
g

sin ϕ

a
√

(ζ 2 − η2)(ζ 2 − 1)

)
(38)
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py = −i h
1√
g

(
∂

∂ζ

√
g

sin ϕζ
√

(ζ 2 − η2)(ζ 2 − 1)

a(ζ 2 − η2)

+ ∂

∂ϕ

√
g

cos ϕ

a
√

(ζ 2 − η2)(ζ 2 − 1)

)
(39)

px = −i h
1√
g

∂

∂ζ

√
g

η(ζ 2 − 1)

a(ζ 2 − η2)
(40)

Then Eq. (15) holds true with fi (x , y, z) (i = 1, 2, 3) being, respectively

f1(x , y, z) =
√

g

yz
, f2(x , y, z) =

√
g

zx
, f3(x , y, z) =

√
g

xy
(41)

3. CONCLUSION AND DISCUSSION

In this paper, we study in the 3D Cartesian coordinates the 2D geometrically
constrained quantum systems. Results show that the quantum kinetic energy op-
erators can be rewritten in the form of Eq. (15). We demonstrate through explicit
functions that there is an ordering problem in it, i.e., the functions fi in Eq. (15) is
dummy in classical mechanics. This kind of ordering problem is entirely different
from that in the existing one, the so-called correct quantum Hamiltonian operator
written in an arbitrary curvilinear coordinate system (3). Our approach gives a new
supporting of the completeness of theoretical frame of quantum mechanics.
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